Thread Safety with Phaser, StampedLock and VarHandle 1

~__Thread Safety with Phaser,
StampedLock and VarHandle

— Dr Heinz M. Kabutz
/ Last updated 2018-10-24
© 2018 Heinz Kabutz - All Rights Reserved

@ Javaspecialists.eu



o
5

.a/



Javaspecialists.eu

Thread Safety with Phaser, StampedLock and VarHandle

Phasers

® Allows threads to coordinate by phases

— Similar to CountDownlLatch and CyclicBarrier, but more flexible

® Registration

— Number of parties registered may vary over time
e Same as count in CountDownlLatch, parties in CyclicBarrier
* A party can register/deregister itself at any time

® ManagedBlocker

— Can be used in the ForkJoinPool

® https://github.com/kabutz/modern-synchronizers



Thread Safety with Phaser, StampedLock and VarHandle 4

- Demo of CyclicBarrier vs Phaser

~ github.com/kabutz/modern-synchronizers

@ JQVGSpeCiQ"Sts.eU



O

Enough java.lang.String to Hang Ourselves ...

Who's Who
® Heinz Kabutz @heinzkabutz

— JCrete Unfounder
* www.jcrete.org

— Java Specialists Newsletter
e www.javaspecialists.eu

— Oracle Groundbreaker Ambassador
 developer.oracle.com/ambassadors

Javaspecialists.eu

Groundbreaker
— Java Champion Ambassador

e www.javachampions.org
& | = Java

-~ Champions

\
:
\

©
N
Q
-
0
.
2.
-
N
A\
)
U
c
=
N
>
2
Q
-
-
n
A
D
&\
>
®
Q.




.a/



Thread Safety with Phaser, StampedLock and VarHandle

What is StampedLock?

® Java 8 synchronizer

® Allows optimistic reads

— ReentrantReadWriteLock only has pessimistic reads

® Not reentrant

— This is not a feature

® Use to enforce invariants across multiple fields

Javaspecialists.eu

— For simple classes, synchronized/volatile is easier and faster

® Can split locking and unlocking between threads



Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Exclusive Lock (write)

public class StampedLock {
long writeLock() // never returns @, might block

// returns new write stamp 1f successful; otherwise 0
long tryConvertToWriteLock(long stamp)

void unlockWrite(long stamp) // needs write stamp

// and a bunch of other methods left out for brevity

. Javaspecialists.eu

l\‘



Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Non-Exclusive Lock (read)

public class StampedLock { // continued ...
long readlLock() // never returns @, might block

// returns new read stamp 1f successful; otherwise 0
long tryConvertToReadLock(long stamp)

void unlockRead(long stamp) // needs read stamp

void unlock(long stamp) // unlocks read or write

. Javaspecialists.eu

l\‘



Thread Safety with Phaser, StampedLock and VarHandle

Optimistic Non-Exclusive Read (No Lock)

public class StampedLock { // continued ...
// could return 0 if a write stamp has been issued

long tryOptimisticRead()

// return true if stamp was non-zero and no write
// lock has been requested by another thread since
// the call to tryOptimisticRead()

boolean validate(long stamp)

. Javaspecialists.eu

l\‘



Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();

- double currentStatel = statel,
- currentState2 = state?2, ... etc.;
4 if (!'sl.validate(stamp)) {
B stamp = sl.readLock();
rr try {
() currentStatel = statel;
9 currentState2 = state?2, ... etc.;
> } finally {
S sl.unlockRead(stamp);
/ }
- .

return calculateSomething(currentStatel, currentState2);



Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();

2 double currentStatel = statel, |
- currentState2 = state2, ... etc.; -

! , ’ ’ ' t
= if (!sl.validate(stamp)) { we get a
B stamp = sl.readLock(); Stamp to
2 try { use for the |
a currentStatel f statel; | Optimistic
» currentState2 = state?2, ... etc.; d
S } finally < Ied
ke, sl.unlockRead(stamp);

h
L

return calculateSomething(currentStatel, currentState2);



Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() { - a
long stamp = sl.tryOptimisticRead(); - We read field
double currentStatel = statel, values into |

currentState2 = state?2, ... etc.;
1f (!sl.validate(stamp)) { f local fields

stamp = sl.readLock();
try {

currentStatel statel;

currentState2 state?2, ... etc.;
} finally {

sl.unlockRead(stamp);
}

Javaspecialists.eu

}

return calculateSomething(currentStatel, currentState2);



Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();

- double currentStatel = statel, —
:r currentState2 = state2, ... etc.; ~ Next we validate
] if (!sl.validate(stamp)) { that no write locks
- stamp = sl.readLock(); " have been issued
o try { P hile |
0 currentStatel = statel: ~ 1n the meanwhile
9’ currentState2 = state?2, ... etc.;
> } finally {
S sl.unlockRead(stamp);

_ }

I3

return calculateSomething(currentStatel, currentState2);



Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() { ~ If they have,
long stamp = sl.tryOptimisticRead(): :
- dougle curerentStat>e11P= statel, W then We, don't
9 currentState2 = state2, ... etc.; , know 1f our
- if (!sl.validate(stamp)) { state 1s clean
- stamp = sl.readLock(); ‘
S try {
() currentStatel = statel;
S currentState2 = state2, ... etc.; — ———
o } finally { Thus we acquire a|
k. sl.unlockRead(stamp); pessimistic read |
{ ; lock and read the

return calculateSomething(currentStatel, cun state 1nto local
} ~ fields




Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();

- double currentStatel = statel,
- currentState2 = state?2, ... etc.;
4 if (!'sl.validate(stamp)) {
B stamp = sl.readLock();
rr try {
() currentStatel = statel;
9 currentState2 = state?2, ... etc.;
> } finally {
S sl.unlockRead(stamp);
/ }
- .

return calculateSomething(currentStatel, currentState2);



T

\ Javaspecialists

Thread Safety with Phaser, StampedLock and VarHandle

Sifis the Cretan Crocodile (RIP

"

® Poor critter was
roaming around
Crete

— The pet became
too big

— Or hungry

® Eventually died
In our cold
winter months

17



Thread Safety with Phaser, StampedLock and VarHandle

Introducing the Position Class

® When moving from (0,0) to (5,5), we want to travel in a diagonal line

— We don’t want to ever see our position at (0,5) or especially (5,0)

. (55) \? (5,5)

(0,0)

Javaspecialists.eu

\

(5,0)



Thread Safety with Phaser, StampedLock and VarHandle 19

Refactoring Position and IntList

~ github.com/kabutz/modern-synchronizers

@ JQVGSpeCiQ"Sts.eU



o
5

.a/



Javaspecialists.eu

Thread Safety with Phaser, StampedLock and VarHandle

Java 9 VarHandles Instead of Unsafe

® VarHandles remove biggest temptation to use Unsafe

— As fast as Unsafe

® Can read and write fields of class

— getVolatile() / setVolatile()

— getAcquire() / setRelease()

— getOpaque() / setOpaquel()

— get() / set() - plain

— compareAndSet(), returning boolean

— compareAndExchangeVolatile(), returning found value always



Thread Safety with Phaser, StampedLock and VarHandle 22

Refactoring Position from
StampedLock to VarHandle

~ github.com/kabutz/modern-synchronizers

@ JQVGSpeCiQ"Sts.eU



N
W

Enough java.lang.String to Hang Ourselves ...

Questions?
® Heinz Kabutz @heinzkabutz

— JCrete Unfounder
* www.jcrete.org

— Java Specialists Newsletter
e www.javaspecialists.eu

— Oracle Groundbreaker Ambassador
* developer.oracle.com/ambassadors Oracle

Groundbreaker
— Java Champion Ambassador

e www.javachampions.org
& | = Java

-~ Champions

Javaspecialists.eu

l\‘

©
N
Q
-
0
.
2.
-

N

A\
)

U
c

=
N

>
2
Q

-
-
n

A
D

&\

>

®

Q.




Thread Safety with Phaser, StampedLock and VarHandle 24

~ Please remember to vote as you
exitroom |

@ Javaspecialisis.eu



