
Thread Safety with Phaser, StampedLock and VarHandle

Thread Safety with Phaser,
StampedLock and VarHandle

Dr Heinz M. Kabutz  
Last updated 2018-10-24

© 2018 Heinz Kabutz – All Rights Reserved

!1

Thread Safety with Phaser, StampedLock and VarHandle

Phaser

!2

Thread Safety with Phaser, StampedLock and VarHandle

Phasers
! Allows threads to coordinate by phases

– Similar to CountDownLatch and CyclicBarrier, but more flexible

! Registration
– Number of parties registered may vary over time

• Same as count in CountDownLatch, parties in CyclicBarrier
• A party can register/deregister itself at any time

! ManagedBlocker
– Can be used in the ForkJoinPool

! https://github.com/kabutz/modern-synchronizers

!3

Thread Safety with Phaser, StampedLock and VarHandle

Demo of CyclicBarrier vs Phaser

github.com/kabutz/modern-synchronizers

!4

Enough java.lang.String to Hang Ourselves ...
©

 2018 H
einz K

abutz, A
ll R

ights R
eserved

Who’s Who
! Heinz Kabutz @heinzkabutz

– JCrete Unfounder
• www.jcrete.org

– Java Specialists Newsletter
• www.javaspecialists.eu

– Oracle Groundbreaker Ambassador
• developer.oracle.com/ambassadors

– Java Champion
• www.javachampions.org

!5

Thread Safety with Phaser, StampedLock and VarHandle

StampedLock

!6

Thread Safety with Phaser, StampedLock and VarHandle

What is StampedLock?
! Java 8 synchronizer

! Allows optimistic reads
– ReentrantReadWriteLock only has pessimistic reads

! Not reentrant
– This is not a feature

! Use to enforce invariants across multiple fields
– For simple classes, synchronized/volatile is easier and faster

! Can split locking and unlocking between threads

!7

Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Exclusive Lock (write)
public class StampedLock { 
 long writeLock() // never returns 0, might block 

 // returns new write stamp if successful; otherwise 0
 long tryConvertToWriteLock(long stamp)

 void unlockWrite(long stamp) // needs write stamp

// and a bunch of other methods left out for brevity

!8

Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Non-Exclusive Lock (read)
public class StampedLock { // continued ... 
 long readLock() // never returns 0, might block 

 // returns new read stamp if successful; otherwise 0
 long tryConvertToReadLock(long stamp)

 void unlockRead(long stamp) // needs read stamp

 void unlock(long stamp) // unlocks read or write

!9

Thread Safety with Phaser, StampedLock and VarHandle

Optimistic Non-Exclusive Read (No Lock)
public class StampedLock { // continued ...
 // could return 0 if a write stamp has been issued
 long tryOptimisticRead()

 // return true if stamp was non-zero and no write
 // lock has been requested by another thread since
 // the call to tryOptimisticRead()
 boolean validate(long stamp)

!10

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!11

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!12

We get a
stamp to

use for the
optimistic

read

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!13

We read field
values into
local fields

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!14

Next we validate
that no write locks
have been issued
in the meanwhile

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!15

If they have,
then we don't
know if our
state is clean

Thus we acquire a
pessimistic read
lock and read the

state into local
fields

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!16

Thread Safety with Phaser, StampedLock and VarHandle !17

! Poor critter was  
roaming around 
Crete

– The pet became  
too big

– Or hungry

! Eventually died 
in our cold  
winter months

Sifis the Cretan Crocodile (RIP)

Thread Safety with Phaser, StampedLock and VarHandle

Introducing the Position Class
! When moving from (0,0) to (5,5), we want to travel in a diagonal line

– We don’t want to ever see our position at (0,5) or especially (5,0)

!18

(5,5)

(0,0)

👍 👎 (5,5)

(0,0)

(5,0)

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring Position and IntList

github.com/kabutz/modern-synchronizers

!19

Thread Safety with Phaser, StampedLock and VarHandle

VarHandle

!20

Thread Safety with Phaser, StampedLock and VarHandle

Java 9 VarHandles Instead of Unsafe
! VarHandles remove biggest temptation to use Unsafe

– As fast as Unsafe

! Can read and write fields of class
– getVolatile() / setVolatile()
– getAcquire() / setRelease()
– getOpaque() / setOpaque()
– get() / set() - plain
– compareAndSet(), returning boolean
– compareAndExchangeVolatile(), returning found value always

!21

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring Position from
StampedLock to VarHandle

github.com/kabutz/modern-synchronizers

!22

Enough java.lang.String to Hang Ourselves ...
©

 2018 H
einz K

abutz, A
ll R

ights R
eserved

Questions?
! Heinz Kabutz @heinzkabutz

– JCrete Unfounder
• www.jcrete.org

– Java Specialists Newsletter
• www.javaspecialists.eu

– Oracle Groundbreaker Ambassador
• developer.oracle.com/ambassadors

– Java Champion
• www.javachampions.org

!23

Thread Safety with Phaser, StampedLock and VarHandle

Please remember to vote as you
exit room

!24

